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The ability to make a correct choice of behavior from various options is
crucial for animals’ survival. The neural basis for the choice of behavior
has been attracting growing attention in research on biological and artifi-
cial neural systems. Alternative choice tasks with variable ratio (VR) and
variable interval (VI) schedules of reinforcement have often been em-
ployed in studying decision making by animals and humans. In the VR
schedule task, alternative choices are reinforced with different probabil-
ities, and subjects learn to select the behavioral response rewarded more
frequently. In the VI schedule task, alternative choices are reinforced at
different average intervals independent of the choice frequencies, and
the choice behavior follows the so-called matching law. The two policies
appear robustly in subjects’ choice of behavior, but the underlying neu-
ral mechanisms remain unknown. Here, we show that these seemingly
different policies can appear from a common computational algorithm
known as actor-critic learning. We present experimentally testable vari-
ations of the VI schedule in which the matching behavior gives only a
suboptimal solution to decision making and show that the actor-critic
system exhibits the matching behavior in the steady state of the learning
even when the matching behavior is suboptimal. However, it is found
that the matching behavior can earn approximately the same reward as
the optimal one in many practical situations.

1 Introduction

How animals or humans organize their behavior depends crucially on the
expected return that may result from their actions. It is widely consid-
ered that they attempt to maximize the obtainable reward, and a similar
concept underlies several efficient algorithms in machine learning (Sutton
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& Barto, 1998). Extensive studies have been conducted to clarify whether
animals’ or humans’ behavior obeys this conceptual rule (Rachlin, Green,
Kagel, & Battalio, 1976; Sakagami, Hursh, Christensen, & Silberberg, 1989;
Silberberg, Thomas, & Brendzen, 1991; Herrnstein, 1997; Daw & Touretzky,
2002; Mazur, 2005). This issue, however, still remains to be clarified.

Various types of behavioral experiments have been conducted to clarify
how subjects make a particular decision according to the output of their
actions. Typical examples of such decision making tasks are those with
variable ratio (VR) and variable interval (VI) schedules of reinforcement
(Mazur, 2005). In these tasks, subjects are typically required to choose one
of several alternative behavioral responses to get a reward. In the VR sched-
ule task, alternative choices are reinforced with different ratios to the choice
frequencies. A reward is given with a probability for the response. In this
case, subjects learn to select the response rewarded more frequently in a
sufficiently long training time.1 It is obvious that subjects are able to maxi-
mize the reward following this policy of decision making. This observation
led us to the basic concept of reinforcement learning, in which a behav-
ior choice must be reinforced only when it results in a reward delivery. In
the VI schedule task, alternative choices are reinforced at different aver-
age intervals independent of the choice frequencies. A reward is assigned
to each option at a rate independent of the current choice and the assign-
ment to other options; once the reward is assigned, it remains available
until the subject takes it. Because of this persistence of rewards, subjects
must scatter their choices over the alternatives to increase the reward they
will obtain. Simply choosing one of the alternatives that is rewarded more
frequently does not ensure a maximal reward. In fact, in the VI schedule
task, the subject’s choice behavior is known to obey matching law, which
says that the frequency of choosing each alternative is proportional to the
size of the past reward obtained by the choice (Herrnstein, 1997). Matching
behavior is widely seen in many species, including humans (Davison &
McCarthy, 1987), and has been shown to approximate the best probabilis-
tic behavior (Heyman, 1979; Baum, 1981) if the amount or the strength of
the reward obtainable from each alternative is equivalent, as was the case
in many previous studies of animal and human behavior. The exclusive
choice behavior seen in the VR task is even consistent with matching law
in a trivial sense that all the options but one are never chosen and hence
produce no rewards. Therefore, we can say that the matching behavior

1While an obvious optimal choice behavior in the VR schedule task is to keep choos-
ing an option that is rewarded most probably, in a realistic situation, subjects exhibit
probability matching, in which the choice probability of an option is proportional to the
conditional probability that the option may be rewarded when chosen (Morris, Arkadir,
Nevet, Vaadia, & Bergman, 2004). The probability matching might represent an exploring
behavior, since choice behavior often becomes more deterministic in extensive training.
What factors, however, can make such a behavioral change remain elusive.
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is observed commonly in the VR and VI tasks. Learning strategies to at-
tain matching behavior have been proposed (Herrnstein & Vaughan, 1980;
Sugrue, Corrado, & Newsome, 2004). However, the neural computations
underlying the matching behavior remain unknown. In addition, the be-
havioral implications of the matching behavior are not necessarily obvious
in a generic sense (Staddon & Hinson, 1983; Mazur, 2005).

In this study, we demonstrate that the matching law can emerge from
a computational algorithm known as actor-critic learning in theories of
reinforcement learning (Sutton & Barto, 1998). Reinforcement learning pro-
vides a computational framework to account for a subject’s choice behavior
in Markov decision processes, such as the VR task. Since the VI task is
not Markovian, actor-critic learning does not necessarily ensure an optimal
solution to the VI task. We propose in this study that the different behav-
ioral policies provided by the actor-critic learning system in the VR and
VI tasks may represent different outcomes of the matching law. Then we
investigate how the probability of choosing each alternative is changed in
actor-critic learning when the design of the VI schedule task is slightly more
complicated. For instance, we may assign different amounts of reward to
different alternatives at different average frequencies. Alternatively, we may
withdraw a once assigned reward at some frequencies. We can prove that
actor-critic learning with a sufficiently small learning rate always exhibits
matching behavior in the steady state of reinforcement learning. Interest-
ingly, however, in many cases, the matching behavior is no longer optimal.
We argue possible implications of these results for interpreting the observed
animal’s behavior.

2 Reinforcement Schedules and the Matching Law

For simplicity in task design, we consider an alternative choice task con-
sisting of a trial sequence with discrete time steps; free-response tasks on
continuous time have been used in many previous studies concerning the
matching law. At each time step, a subject is required to choose one of n
available options for which rewards are set independently of the subject’s
choice behavior. In a variable interval (VI) schedule, a reward is assigned
to option a at a rate of λa (a = 1, 2, . . . , n) independent of the assignment
to other options. Once the reward is assigned, it remains available, and no
additional reward is assigned until it is taken by a subject. In a variable
ratio (VR) schedule, every choice of option a may result in a reward with a
conditional probability of λa . As in many previous behavioral studies, here
the amount of reward obtainable by a single choice behavior is identical
for all alternatives. The VR schedule may resemble the situations that many
carnivorous animals encounter during hunting. For instance, a cheetah may
decide which prey, a zebra or a gazelle, she should chase according to the
success of her past hunting. The VI schedule may imitate the situations that
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herbivorous animals meet in their foraging behavior: once they visit this
grass, it will become available again only after a certain period.

The likelihood of being rewarded by choosing an option remains con-
stant in a VR schedule, while in a VI schedule, it increases with the time
that has passed from the last choice of that option. The probability that a
reward is assigned to option a by T steps after its previous choice is given as
Pr(assigned to a |T) = 1 − (1 − λa )T . If a subject makes a random choice of
alternatives with choice probabilities Pa , the average income from choosing
option a (i.e., action a ) can be derived as

Ra = ρ

∞∑
T=1

Pr(assigned to a |T)(1 − Pa )T−1 P2
a = ρλa Pa

1 − (1 − λa )(1 − Pa )
,

where ρ is the amount of reward obtainable in a single choice. Note that
Ra represents the average taken over the all trials rather than the trials in
which option a is actually chosen by a subject. Hence, the summation over
all possible choices

∑
a Ra represents the average reward per a trial. The best

probabilistic behavior is defined by the set of choice probabilities {P∗
a } that

maximize
∑

a Ra under the constraint
∑

a Pa = 1. This maximization can be
done using the Lagrange multiplier method; the best choice probabilities
are derived as

P∗
a = λa/(1 − λa )∑n

a ′=1 λa ′/(1 − λa ′ )
, (2.1)

which obey the matching law

P∗
a = Ra

/
n∑

a ′=1

Ra ′ . (2.2)

Thus, we find that the best choice probabilities exactly obey the matching
law in the discrete time VI task with equal amounts of reward set for single
choices of any option. This is consistent with the results in the continuous-
time VI task (Heyman, 1979; Baum, 1981). Note that the probabilistic choice
behavior, equation 2.1, is best in a limited situation that allows a subject to
make a random choice on each trial with a set of constant choice probabili-
ties. It has been known that truly optimal behavior in a VI schedule task is in
general given by a perfectly periodic choice (Houston & McNamara, 1981).
However, random or probabilistic choice behaviors have been observed in
a wide range of VI schedule tasks (Herrnstein, 1997; Mazur, 2005; Sugrue
et al., 2004), and we focus on probabilistic choice behaviors in this letter.
We use the term best instead of optimal for a behavior that is optimal among
probabilistic choice behaviors, reserving the term optimal for truly optimal
behavior.
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In a VR task, the optimal behavior is obviously to keep choosing the op-
tion that is rewarded at the highest rate. This behavior looks quite different
from the best probabilistic choice in a VI task. Nevertheless, the complete
bias toward a single option in the VR task is consistent with the matching
law given by equation 2.2, since the options other than the optimal one are
never chosen by the subject and hence produce no reward. It can therefore
be said that the best choice probabilities satisfy the matching law in both VI
and VR tasks.

3 Actor-Critic Method Without State Variables

Animals are known to exhibit the best probabilistic behavior in both VR and
VI schedule tasks (Davison & McCarthy, 1987; Herrnstein, 1997; Mazur,
2005). How is the brain capable of developing the best choice probabil-
ities in the seemingly different tasks? Is there a common computational
algorithm to achieve the best choice probabilities in both cases? Here, we
demonstrate that the actor-critic learning, a well-known algorithm of re-
inforcement learning in engineering and robotics, can account for the best
choice probabilities in both VR and VI tasks.

In actor-critic learning, the “critic” predicts the rewards obtainable in the
future, and the “actor” changes the system’s internal states and selects an
action that presumably leads to an optimized future reward according to
the prediction (Sutton & Barto, 1998). For the time being, we consider actor-
critic learning without state variables, since no explicitly varying state seems
to exist in the alternative choice tasks. More general situations in which
the state is a dynamical variable observable by a subject are discussed in
appendix B.

The actor chooses an action from n alternatives according to the current
choice probabilities {pa }, where every choice is made independent of others.
Note that the previous {Pa } represents the long-term average of {pa }. The
choice probabilities are determined by the policy parameters {qa } as

pa = f (qa )

/
n∑

a ′=1

f (qa ′ ) ,

where f (·) is a positive, monotonically increasing function (e.g., an expo-
nential function). A reward rt may be given as a result of the action at chosen
at time step t. In the VI and VR schedules introduced previously, rt can be
either ρ or zero. The critic updates the estimation of the average reward
obtained by all the options, V, which decays with a time constant of 1/α if
no reward is earned by the current choice:

V + �V → V, �V = α(rt − V). (3.1)
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There exists no state variable that may change explicitly with time and may
influence the estimation of V. Therefore, V always estimates the reward
expected at the current time step in the environment that does not change
its probabilistic structure with time.

The current choice at made by the actor is evaluated by the critic in
terms of the error in the reward estimation, rt − V. If the error is positive,
that is, the obtained reward is greater than what was expected, the actor
increases the probability of choosing the current action by updating the
corresponding policy parameter as

qat + �qat → qat , �qat = α(rt − V). (3.2)

Note that actor-critic learning updates only the policy parameter corre-
sponding to the action selected in the current trial. The dopamine neurons
in the basal ganglia were shown to provide the error signal, possibly serving
as the critic during cognitive motor learning. The motor-related frontal cor-
tices and the striatum, an input nucleus of the basal ganglia, are considered
to be essential for motor selection, thus operating as the actor (Houk, Davis,
& Beiser, 1994; Doya, 2000; Dayan & Balleine, 2002; Tanaka et al., 2004;
Schultz, 2004; Haruno et al., 2004). These cortical and subcortical neural
systems are the candidate loci of decision making in animals and humans.

Figure 1 demonstrates how an actor-critic system chooses alternatives
(n = 2) in simulations of the VR and VI tasks. The rates of the reward
assignment were set at different values for the two actions. The results
proved that the fraction of the choice probabilities, that is, p1 (solid curves),
gradually approaches the best values (dashed lines), which are consistent
with the matching law, in both tasks.

We show below why the matching behavior can be obtained by actor-
critic learning. To include all the policy parameters explicitly, we rewrite
the updating rule 3.2 as

�qa = α(rt − V)δaat , (a = 1, . . . , n),

where δi j is 1 if i = j , or 0 otherwise. The long-term averages of these policy
parameters are given as

〈�qa 〉 = α〈(rt − V)δaat 〉 = α(〈rtδaat 〉 − 〈Vδaat 〉),

where the bracket 〈 · 〉 means a long-term average over τ trials. The first
term, 〈rtδaat 〉, represents the average income obtained by choosing action a ,
and hence 〈rtδaat 〉 = Ra . In the second term, 〈Vδaat 〉, V generally depends
on the choice frequencies of option a and others. However, if the learning
rate α in equation 3.1 is sufficiently small compared with the reciprocal of
the averaging span τ , that is, α � 1/τ , then the reward estimation V can be
regarded as constant during the averaging span τ (see appendix B). In this
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Figure 1: The choice behavior of an actor-critic system without state variables
in VR and VI schedules (n = 2). The system achieves the best probabilistic
behavior in either VR (A) or VI (B) schedule task, in which different reward
rates were assigned to the alternatives: (λ1, λ2) = (0.05, 0.2). See appendix C
for other conditions of numerical simulations. Solid curves stand for the time
courses of the fraction of the current choice probabilities, that is, p1, determined
by the policy parameters q1 and q2. Dashed lines stand for the fraction of the
best choice probabilities, that is, P∗

1 .

case, 〈Vδaat 〉 can be factorized into 〈V〉〈δaat 〉, and the average 〈V〉 coincides
with the actual reward obtained in a steady state since the estimation error
should vanish in that state. Therefore,

〈V〉 = 〈rt〉 =
n∑

a=1

Ra .

The average 〈δaat 〉 represents the choice frequency of individual actions, that
is, 〈δaat 〉 = Pa , which coincides with the long-term average of the instanta-
neous choice probability, Pa = 〈pa 〉. Thus, we obtain the slow dynamics of
the policy parameters averaged over τ trials,

〈�qa 〉 	 α

(
Ra − Pa

n∑
a ′=1

Ra ′

)
,

and 〈�qa 〉 	 0 implies the matching law in the steady state:

Pa = Ra

/
n∑

a ′=1

Ra ′ .
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The result shows that actor-critic learning always exhibits matching be-
havior in the steady state, as far as the learning rate α can be regarded
as sufficiently small. We note that the above relationship could be derived
regardless of the reinforcement schedule. The result does not show that the
steady state defined by 〈�qa 〉 = 0 is attained in an arbitrary choice task.
However, as far as the policy parameters stay in a finite range, the steady
state 〈�qa 〉 	 0 should be attained if the averaging span τ is sufficiently
large. Divergence of a policy parameter usually leads to an exclusive choice
behavior, which also satisfies the matching law. Thus, it is suggested that
the actor-critic learning with a sufficiently small learning rate leads to the
matching behavior in most practical choice tasks, regardless of whether
the behavior is the best for a specific reinforcement schedule employed in
the task.

4 VI Schedule Task with Different Reward Magnitudes

Unlike the previous cases, we can find a variety of reinforcement schedules
in which the matching behavior is not longer the best. The simplest exam-
ples include an extended VI schedule task that assigns different amounts of
the same reward to different options: ρa 
= ρb for a 
= b, where ρa denotes
the amount of reward for action a . In this case, the best choice probabilities
and the average fractional incomes satisfy (see appendix A)

P∗
a = R∗

a /
√

ρa∑
a ′ R∗

a ′/
√

ρa ′
.

This relationship deviates from the matching law by a scaling factor of√
ρa , meaning that the matching behavior does not maximize the average

reward, when the amounts of reward per choice differ for different options.
Whether actor-critic learning leads to the matching behavior was numer-

ically tested in Figure 2E for successive four blocks of the VI schedule task
with different combinations of the rates and the amounts of the reward as-
signed to alternatives (n = 2). Depending on the values of these parameters,
there is a unique solution (see equation A.4) representing the matching law
besides two trivial solutions representing exclusive choices: (P1, P2) = (1, 0)
and (0, 1). The solid and dashed lines in each block indicate the best and the
nontrivial matching choice probabilities, respectively. We find that the actor
quickly learns the choice probabilities representing the matching behavior
(the black curve) in all the trial blocks. Results of the simulations proved that
the actor-critic learning produces the matching, but not the best, behavior in
the VI task with unequal rewards. Furthermore, the learning produced no
fifty-fifty random choice behavior, although it ensures the average return
that is almost equivalent to the best one (the first and second blocks). We
note that the fraction of the current choice probabilities of the actor follows
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Figure 2: The matching behavior of the actor-critic system without state vari-
ables in the VI schedule task with different reward magnitudes (n = 2). Dif-
ferent reward rates and reward amounts were assigned to the alternatives
in successive four blocks: (λ1, λ2, ρ1, ρ2) = (0.05, 0.15, 2, 0.3), (0.15, 0.05, 0.3, 2),
(0.03, 0.3, 0.3, 2), (0.3, 0.03, 2, 0.3). Other conditions are summarized in ap-
pendix C. (A–D) The average return 〈rt〉 is shown as a function of the choice
probability P1 for each trial block. The solid and dashed vertical lines indicate
the fraction of the best and matching choice probabilities calculated analytically
in equations A.3 and A.4, respectively. (E) The time courses of the fraction of
the current choice probabilities of the actor; p1 (black curve) and the fraction
of the locally averaged incomes, R̂1/(R̂1 + R̂2) are shown (gray curve) together
with the fractions of the best (solid line) and the matching (dashed line) choice
probabilities. The system always displays the matching, rather than the best,
behavior in all four blocks.

the fraction of the local incomes averaged over relatively short intervals
(the gray curve).

The magnitude of reward may in general differ for different options in
many feasible situations in nature. It is, however, unclear how animals scale
the subjective value of a reward based on its physical strength. Many factors
seem to affect the evaluation of the subjective value. To avoid these compli-
cations, we give another extension of the VI schedule in which quantitative
comparisons between experimental and theoretical results will be easier.

5 Competitive Foraging Task

Here, we introduce a task in which the best choice probabilities deviate from
those given by the matching law, even if an identical reward is assigned to
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Figure 3: The competitive foraging task, in which extended VI schedules with
stochastic withdrawal at a constant rate are assigned to the alternatives. (A) The
probability that a reward has been assigned to an option depends on how long
the subject may wait for the next choice of that option. The withdrawal rate
changed by a 0.1 step interpolates choice tasks between the VI schedule (µ = 0)
and the VR schedule (µ = 1). (B) The fractions of the best choice probabilities
(solid curve) and the choice probabilities of the matching behavior (dashed
curve) are shown as functions of the withdrawal rate for the schedule specified
by (λ1, λ2) = (0.2, 0.16).

every reinforcer. As in the VI schedule, identical rewards are stochastically
and independently set for each option at a constant rate (λa for option a ).
However, the reward set for option a may be withdrawn at a constant rate of
µa , if the reward has not been taken out. Different values of the withdrawal
rate µ generate various mixtures of the VI and VR schedules between pure
VI (µ = 0) and pure VR (µ = 1). The combination of the withdrawal rates,
µ1 = 0 and µ2 = 1, corresponds to the concurrent VI and VR schedules,
in which an option is reinforced in a VI schedule and the other in a VR
schedule (Herrnstein & Heyman, 1979; Herrnstein, 1997). These schedules
may better imitate the natural environment for foraging by herbivorous
animals, because food may sometimes be intercepted by their competitors.
Hence, we call this extended schedule task the competitive foraging task.
Note that this task contains no dynamic interactions with competitors. It is
said that this is a foraging task with stationarily stochastic competitors that
do not change their behavior according to that of their competitors.

As in the VI schedule without the withdrawal, the likelihood of reward
assignment to an option increases monotonically with the time passage
from the last choice of that option (see Figure 3A). The likelihood, however,
saturates to an asymptotic value that decreases with the increases in µ.
The profile of the likelihood changes smoothly from the VR to VI schedule.
Figure 3B displays how the best choice probabilities (solid line) and the
choice probabilities satisfying the matching law (dashed line) depend on µ
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Figure 4: The matching behavior of the actor-critic system without
state variables in the competitive foraging task (n = 2). In the four
blocks, different reward rates and withdrawal rates were assigned to
the alternatives: (λ1, λ2, µ1, µ2) = (0.09, 0.06, 0.15, 0.4), (0.06, 0.09, 0.4, 0.15),
(0.09, 0.06, 0.01, 0.4), (0.06, 0.09, 0.4, 0.01). Other conditions are summarized in
appendix C. (A–D) The average return 〈rt〉 is shown as a function of choice
probability P1 for each trial block. Solid and dashed vertical lines indicate the
fraction of the best and matching choice probabilities, calculated analytically
in equations A.3 and A.4, respectively. (E) The time courses of the fractions of
the current choice probabilities (black curve) and the locally averaged incomes
(gray curve) are shown together with the fractions of the best (solid line) and
the matching (dashed line) choice probabilities.

for n = 2. We can see that the choice probabilities differ from one another
in the intermediate range 0 < µ < 1 but coincide at both ends representing
the VI (µ = 0) and VR (µ = 1) schedules. In fact, the relationship between
the best choice probabilities and the average incomes is explicitly given as
(see appendix A)

P∗
a ∝

√
λa + µa − µaλa

λa
R∗

a ,

which differs from what is predicted by the matching law if µa 
= 0 for some
a . Figure 4E shows how the actor-critic learning system behaves in simula-
tions of four successive blocks of the competitive foraging task with differ-
ent combinations of the assignment and withdrawal rates. At given values
of these parameters, there is a unique nontrivial solution representing the
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matching law, equation A.4. As in the conventional VI task, the fraction
of the choice probabilities in the actor-critic system (black curve) follows
the fraction of the locally averaged incomes (gray curve), and the choice
behavior displays the nontrivial matching law (dashed line) rather than the
best one (solid line). We find that the actor-critic learning again leads to the
matching behavior rather than to the best one.

6 Implications of the Matching Behavior for Optimizing Rewards

We have proved that the actor-critic learning with a sufficiently small learn-
ing rate always produces the matching behavior in the steady state, regard-
less of whether it is the best. In addition, we have shown that the matching
behavior earns an amount of rewards that is approximately equivalent to
the maximum amount. We evaluated how much reward subjects may lose
if they obey behavioral policies other than an optimal one. As noted pre-
viously, the optimal behavior in a VI schedule task is a periodic choice if
behaviors other than random choices are allowed (Houston & McNamara,
1981). This also holds for the competitive foraging task, because the time
from the last choices of the options provides sufficient information about the
reward expectation (see Figure 3A). In this case, the optimal current choice
at a certain pattern of the passaged time is determined by the pattern, and
hence, the choice behavior becomes periodic.

Let us represent the parameter space of the competitive foraging task by
a five-dimensional unit cube spanned by (λ1, λ2, µ1, µ2, ρ1/(ρ1 + ρ2)). Each
parameter takes its value in the range [0, 1]. In each set of task parameters,
we numerically calculated the maximum rewards 〈r∗

t 〉 obtainable with the
optimal periodic choice and the rewards 〈rt〉 obtainable with various choice
behaviors: the best probabilistic choice, the matching choice, the alternate
choice, the 50-50 random choice, and the worst probabilistic choice behav-
iors. By sweeping the entire space of task parameters, we can obtain the
fraction of the parameter region in which each choice behavior can earn
more than a ratio x of the maximum reward: 〈rt〉/〈r∗

t 〉 > x (see Figure 5). We
found that the matching behavior can earn more than 90% of the maximum
reward in 93% of all possible task schedules of the competitive foraging
task (filled circles). In 76% of all schedules, the matching behavior can earn
a reward equivalent to the maximum amount (empty circle). The alternate
choice and the 50-50 random choice can earn up to 50% of the maximum
reward in all possible schedules. However, if we increase the acceptable
range up to 90% of the maximum reward, the percentages of the successful
tasks reduce to only 29% (the square) and 15% (the cross) in the alternate
and 50-50 random choices, respectively. These results have proved that the
matching behavior gives suboptimal behavior, which can earn rewards re-
markably close to the maximum one in most schedules of the competitive
foraging task.
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Figure 5: The comparison of various choice behaviors in the competitive forag-
ing task. The curves represent the relative volume of the subspace of parameters
in which the ratios of the average rewards to the maximum reward are greater
than x, that is, 〈rt〉/〈r∗

t 〉 > x, for x in the best probabilistic (gray dashed), match-
ing (black solid), regularly alternate (dot-dashed), 50-50 random (dashed), and
worst probabilistic (gray solid) choice policies. Here, 〈rt〉 is the expected re-
ward in each behavior, and 〈r∗

t 〉 is the maximum amount of reward obtainable
by the optimal periodic choice. The parameter space is represented by a five-
dimensional unit cube (λ1, λ2, µ1, µ2, ρ1/(ρ1 + ρ2)). The marks at x = 0.9 of the
maximum show the relative volumes occupied by the tasks in which individual
choice policies can earn more than 90% of the maximum gain. The matching
behavior shows a 100% gain in 76% of the competitive foraging tasks.

7 Discussion

We have proved that actor-critic learning with a sufficiently small learning
rate always exhibits matching behavior in an arbitrary alternative choice
task when the learning attains a steady state. We also have demonstrated
that the learning develops the matching behavior with a practical value
of the learning rate in several probabilistic choice tasks, including the VI
schedule. It was previously shown that matching behavior approximates
the best probabilistic behavior to maximize the long-term average of reward
in continuous-time versions of the VI schedule task (Heyman, 1979; Baum,
1981), and here we have shown that matching behavior provides the best
choice probabilities in discrete-time versions of the VI schedule task if the
amount of the reward that is obtainable in single choices is identical for all
alternatives. This experimental setting has been used in many behavioral
studies that have demonstrated the matching law. Consequently, results of
these studies were consistent with the hypothesis that the animal’s behavior
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is reinforced to optimize the choice probabilities to maximize the reward and
that the matching behavior is a consequence of this optimization process.

However, the matching behavior is not necessarily the best among the
choice behaviors in some alternative choice tasks. Some previous work has
shown examples in which the best choice probabilities do not satisfy the
matching law. A simple example is the case where the amount of the re-
ward obtained in a single choice is not identical for different alternatives.
Consistent with the results of actor-critic learning, the matching behavior of
animals was actually observed in this type of experimental setting (Baum
& Rachlin, 1969; Heyman & Monaghan, 1994). However, the internal rela-
tionship between the animal’s subjective value of a reward, on which the
animal’s decision was based, and its physical strength, on which the quali-
tative design of experiments was based, is unknown. Therefore, the results
may not provide clear evidence that the animals exhibit matching behavior
rather than the best probabilistic behavior. Another example can be found
in the concurrent VI and VR schedule tasks (Herrnstein & Heyman, 1979;
Herrnstein, 1997). In this case, the best choice probabilities deviate from
the matching ones, even if the identical reward is assigned to different
alternatives. Again, matching behavior was observed in this type of task
(Herrnstein & Heyman, 1979; Vyse & Belke, 1992; Savastano & Fantino,
1994), although controversial results have been reported (Sakagami et al.,
1989). The issue of matching or maximizing was examined in other types
of choice tasks (Mazur, 1981; DeCarlo, 1985; Jacobs & Hackenberg, 1996),
but the validity of the matching behavior remains unclear (Mazur, 2005).
These experiments are certainly more complicated than those discussed
in this letter due to their basic design using continuous time. In addition,
these experiments introduced “changeover delays” between consecutive
choices to avoid an alternate choice behavior (Stubbs, Pliskoff, & Reid, 1977;
Herrnstein, 1997). These complex experimental settings make comparisons
of results in the different experiments difficult.

In this study, we have extended the VI schedule by introducing the with-
drawal of rewards. Such a task may imitate a general situation that her-
bivorous animals encounter in foraging behavior, because their food may
sometimes be intercepted by their competitors. This competitive foraging
task includes the concurrent VI schedules, the concurrent VR schedules,
and the concurrent VI and VR schedules as extreme cases. In the discrete-
time version of the competitive foraging task, the best choice probabilities
deviate significantly from the matching ones in a wide range of task pa-
rameters (e.g., see Figure 4). Furthermore, we showed in Figure 5 that the
alternate choice is inferior to the matching choice in many cases. Since sub-
jects presumably avoid the alternate choice behavior in such a situation, the
changeover delays may play no active role in many cases of competitive
foraging. A more complicated task was examined by Montague, Dayan,
and Sejnowski (1996). In their task, each choice was reinforced at a rate that
was determined as an arbitrary function of the locally averaged frequency
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of the past choice. This task is of particular interest since an amount of
obtainable reward does not depend on the local order of choosing different
options. Only the total frequencies of choosing the individual options are
meaningful. It can be shown that the expected reward for the optimal and
matching behaviors can be controlled independently in this task. Therefore,
in some cases, the matching behavior loses much reward. It is of extreme
interest to test which behavior, matching or maximizing rewards, subjects
may exhibit in these tasks.

Herrnstein, 1997 and his colleague studied how the matching law might
be achieved in the steady state by the dynamism of behavior and proposed
“melioration.” In melioration, behavior should shift toward a higher local
rate of reinforcement until the rates are balanced at an equilibrium point
representing the matching law: R1/P1 = R2/P2 = · · · = Rn/Pn (Herrnstein,
1997; Herrnstein & Vaughan, 1980). This algorithm consists of the reward
evaluation and the action choice, and hence, it is similar to actor-critic learn-
ings (Daw & Touretzky, 2001). A crucial difference, as shown in this study,
is that actor-critic learning guarantees the matching law in the steady state
without evaluating the average incomes separately for the individual op-
tions. In addition, we do not explicitly require the variable V to estimate
the sum of the average incomes, because we can determine the value of
V from the summation of the policy parameters. Therefore, the dynamics
of the actor-critic system can be described solely by the policy parameters,
�qa = α(rt − ∑

a qa )δaat . This formulation is similar to the “direct actor,”
in which �qa = α(δaat − pa )rt (Dayan & Abbott, 2001), The “local match-
ing law” (Sugrue et al., 2004), by definition attains the matching behavior,
because the choice probabilities are directly determined as the fractions
of locally averaged incomes. The method, however, requires some mecha-
nisms to avoid staying at singular points, at which only a single option is
repeatedly chosen, as in the optimal behavior of the VR task. The different
mathematical models of behavior provide different but partially similar re-
sults of decision-related computations. The different theoretical predictions
can be tested by trial-by-trial fittings between theoretical and behavioral
results (Sugrue et al., 2004; Samejima, Ueda, Doya, & Kimura, 2005) includ-
ing transient effects (Gallistel, Mark, King, & Latham, 2001) and temporal
structures (Staddon & Hinson, 1983).

If matching behavior is not necessarily optimal, is there any reason for
subjects to obey such a behavior? As we have shown, the same actor-critic
learning allows subjects to develop an optimal behavior in the VR task
and a near-optimal behavior in the VI task and its extended versions. We
conjecture that the brain may save a limited resource of neural computations
by utilizing a specific algorithm that can provide at least a suboptimal
solution quite efficiently for various decision tasks.

The neural mechanism of decision making has been studied exten-
sively in various behavioral tasks (Barraclough, Conroy, & Lee, 2004;
Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001; Knutson, Adams, Fong,
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& Hommer, 2001; Montague & Berns, 2002). Accumulating evidence sug-
gests that the errors in predicting future rewards are signaled by dopamine
neurons in the ventral tegmental area and the basal ganglia (Montague
et al., 1996; Schultz, Dayan, & Montague, 1997; McClure, Berns, & Mon-
tague, 2003). It is likely that these nuclei play a role of critic in the behav-
ioral learning. By contrast, activity of prefrontal or parietal neurons has
been shown to represent the probability that a sensory stimulus might ap-
pear the probability that a stimulus might predict a future reward (Platt
& Glimcher, 1999). These activities might represent the value function of a
sensory stimulus, and synaptic mechanisms to generate such neural activity
have been suggested by modeling studies (Seung, 2003; Wang, 2002). The
results of these experimental and theoretical studies must be combined into
theories of decision-making behavior; our results provide a useful platform
to study these theories.

Appendix A: Competitive Foraging Task

By introducing the stochastic withdrawal of assigned rewards, we get an
extended VI schedule that incorporates the VR schedule. Suppose that the
rewards are independently assigned to and withdrawn from each option
at rates λa and µa , respectively. We introduce dynamical variables that
represent the current status of the rewards set for individual options. These
states are updated at time step t as follows:

1. Assignment of a reward to an option turns its state assigned.

2. Reward rat can be given to the current choice at if the corresponding
state is assigned and the state is changed to unassigned.

3. Withdrawal of a reward from an option turns its state unassigned.

Thus, µa = 0 corresponds to the VI schedule and µa = 1 to the VR schedule.
Let T and S denote the time steps from the last choice of a and the last of

withdrawal from a , respectively. The conditional probability that the state
of option a is assigned for given T and S is given as

Pr(‘assigned’ |T, S) = 1 − (1 − λa )min{S,T}.

The probability that the state is assigned at step T is derived by averaging
the above expression over S:

Pr(assigned|T) =
∞∑

S=1

Pr(assigned|T, S) Pr(S)

=
∞∑

S=1

(
1 − (1 − λa )min{S,T}) (1 − µa )S−1µa

= λa
(
1 − (1 − λa )T (1 − µa )T

)
1 − (1 − λa )(1 − µa )

. (A.1)



Actor-Critic Learning 243

If the subject’s step-by-step choice is made independently with constant
probability Pa , then the probability that the state is assigned when option a
is chosen at an arbitrary time step can be derived as

Pr(assigned) =
∞∑

T=1

Pr(assigned|T)(1 − Pa )T−1 Pa

= λa

1 − (1 − λa )(1 − µa )(1 − Pa )
.

Therefore, the average fractional income from option a , Ra , is expressed as

Ra = ρa Pr(‘assigned’ )Pa = ρaλa Pa

1 − (1 − λa )(1 − µa )(1 − Pa )
, (A.2)

where ρa represents the amount of reward obtainable from option a in a
single trial. Note that Ra is the average income defined over all trials rather
than the trials restricted to the choices of option a .

The best choice probabilities {P∗
a } can be obtained by solving the follow-

ing optimization problem:

max
{Pa }

n∑
a=1

Ra , under a constraint
n∑

a=1

Pa = 1, Pa ≥ 0.

Lagrange’s method of multipliers gives candidates for the best choice prob-
abilities {P∗

a } as

P∗
a = C

√
ρaλa (λa + µa − µaλa ) − (λa + µa − µaλa )

(1 − µa )(1 − λa )
or 0, (A.3)

where C is a constant determined by
∑

a Pa = 1. Due to the convexity of the
total average return

∑
a Ra , if a solution that satisfies P∗

a > 0 for arbitrary
a exists, it gives the global maximum. Otherwise a solution that admits
P∗

a = 0 for some options must be selected to maximize the average return.
In the VR schedule task (µ1 = µ2 = · · · = µn = 1), equation A.3 gives

C
√

ρaλa = 1 or P∗
a = 0. If ρaλa , the long-term average of the reward assigned

to an option, is not identical for all options, the best choice is given by P∗
a = 1

for a = arg maxa ρaλa and P∗
a = 0 otherwise. Substituting equation A.3 for

the denominator of equation A.2 leads to the relationship between the best
choice probabilities and the average fractional incomes:

R∗
a = 1

C

√
ρaλa

λa + µa − µaλa
P∗

a .
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Thus, the best choice probabilities generally differ from the prediction of
the matching behavior.

In the VI schedule task (µ1 = µ2 = · · · = µn = 0) with different amounts
of reward, the relationship between the best choice probability and the
average fractional income is scaled by

√
ρa and hence differs from the

matching law:

R∗
a ∝ √

ρa P∗
a .

For an equal amount of reward, ρ1 = ρ2 = · · · = ρn, the matching law holds.
In this case, a solution that satisfies P∗

a > 0 for arbitrary a always exists, so
the best choice probabilities are determined as

P∗
a ∝ λa

1 − λa
∝ R∗

a .

As is shown above, the best choice probabilities do not generally satisfy
the matching law. The choice probabilities satisfying the matching law are
derived from the proportional relationship between Pa and Ra in equa-
tion A.2,

Pa = Cρaλa − λa − µa + λaµa

(1 − λa )(1 − µa )
or 0, (A.4)

where C is a constant determined by
∑

a Pa = 1. The matching law provides
multiple solutions corresponding to possible sets of options for which Pa =
0 if the values of {Pa } determined by equation A.4 are all nonnegative.
The maximum number of solutions is 2n − 1. In the case of two alternatives,
n = 2, a nontrivial solution other than exclusive choices (P1, P2) = (0, 1) and
(1, 0) can be uniquely determined if it exists.

Appendix B: The Matching Law with State Transitions

Here, we extend our analysis to actor-critic learning with state variables and
show that the matching law holds if the law is applied to the choices made in
the same state. State variables may represent any information available for
subjects’ decision making, such as sensory inputs or the history of actions
and rewards. The likelihood of the future return is often employed as a
state variable. In this case, the learner may use a state transition itself as a
reinforcer without an actual reward, so the matching law must be extended
to include such an indirect reinforcer. This extension is straightforward.
Let us consider the future return by a choice made in the state st = s. The
average income obtained in the term after choosing option a in state s is
given as

Ra (s) ≡ 〈(
rt + γ rt+1 + γ 2rt+2 + · · ·) δaat |st = s

〉
,
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where γ is a factor that discounts rewards in the remote future (0 < γ < 1),
and 〈·|·〉 represents a conditional averaging operation. The average in-
come Ra (s) represents the correlation between the choice a in state s and a
weighted sum of the incomes after the choice. Then the matching law can
be interpreted as

Pa (s) = Ra (s)

/∑
a ′

Ra ′ (s) , (B.1)

in terms of the likelihood of the future return, where Pa (s) denotes the
choice probability of action a in state s. We wish to prove this relationship
in the steady state of the actor-critic learning with state variables.

In this case, the critic must make reasonable predictions of the likelihood
of the future reward. Several methods have been proposed for this online
estimation. Here, we adopt so-called temporal difference (TD) learning:

�V(st) = α
(
rt + γ V(st+1) − V(st)

)
.

The function V(s) is called as the state value function and represents how
much reward (discounted by a timescale of 1/γ ) is expected to follow state
s.

The choice probability pa (s) of the actor in state s is described by the
policy parameters qa (s), which are updated in terms of the state value
function as

pa (s) = f (qa (s))

/∑
a ′

f (qa ′ (s)) ,

�qa (st) =α(rt + γ V(st+1) − V(st))δaat .

Since V(s) = ∑
a qa (s), if the relation is satisfied by the initial conditions, the

dynamics are described only by the policy parameters,

�qa (st) = α

(
rt + γ

∑
a ′

qa ′ (st+1) −
∑

a ′
qa ′ (st)

)
δaat .

Therefore, the explicit representation of the state value function is not re-
quired in the actor-critic algorithm.

In the steady state, 〈�V(s)〉 = 0, and we have

〈V(s)〉 = 〈rt + γ V(st+1)|st = s〉 = 〈
rt + γ rt+1 + γ 2rt+2 + · · · |st = s

〉
.
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The average changes in the policy parameters in st = s can be calculated as

〈�qa (s)〉
α

= 〈(rt + γ V(st+1) − V(s))δaat 〉

= 〈(
rt + γ rt+1 + γ 2rt+2 + · · ·) δaat

〉 − 〈V(s)δaat 〉
= Ra (s) − 〈V(s)δaat 〉,

where the condition st = s is omitted from the form 〈 · |st = s〉 for brevity.
The second term satisfies an inequality,

∣∣〈V(s)δaat 〉 − 〈V(s)〉〈δaat 〉
∣∣ ≤

√
Var[V(s)] Var[δaat ],

where Var[ · ] represents the conditional variance on st = s. The value of
δaat is 0 or 1. Therefore, the variance is not larger than 1

4 . The maximum
deviation of V(s) in the time span τ is not larger than the following upper
bound,

max V(s) − min V(s) ≤ ατ (1 + γ + γ 2 + · · ·) max
t

rt = ατ maxt rt

1 − γ
,

from which we can obtain the inequality

∣∣〈V(s)δaat 〉 − 〈V(s)〉〈δaat 〉
∣∣ ≤ ατ maxt rt

4(1 − γ )
.

Since the value V(s) is not larger than maxt rt/(1 − γ ), and since 〈δaat 〉 rep-
resents the choice frequency at st = s, Pa (s), we have

|εa (s)| ≤ ατ

4
, where εa (s) ≡ Pa (s) − 〈V(s)δaat 〉

〈V(s)〉 . (B.2)

The average changes in the policy parameters are described with this εa (s)
as

〈�qa (s)〉
α

= Ra (s) − 〈V(s)〉(Pa (s) − εa (s)).

The steady state defined by the condition 〈�qa (s)〉 = 0 ensures the following
choice frequencies,

Pa (s) = Ra (s)

/∑
a ′

Ra ′ (s) + εa (s),

which implies that εa (s) represents the deviation from the extended match-
ing law, equation B.1, and is diminished in the limit of an infinitesimally
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small learning rate, ατ → 0. The upper bound of the deviation can be de-
rived from the worst evaluation in which rewards happen to be given on
every trial in every averaging span τ . The deviation is far smaller in practical
cases than the upper bound ατ/4. Thus, we find that the actor-critic learn-
ing exhibits the extended matching law in the steady state for a sufficiently
small learning rate.

Other learning rules leading to the matching law can also be extended
to include state variables. The local matching law proposed by Sugrue et al.
(2004) determines the current choice probabilities directly from the frac-
tional incomes in the immediate past. The learning rule with state variables
can be achieved by online TD learning for estimating the state-dependent
reward expectation and the choice probability as

�R̂a (st) = α

[(
rt + γ

∑
a

R̂a (st+1)

)
δaat − R̂a (st)

]
,

pa (s) = R̂a (s)

/∑
a ′

R̂a (s) .

“Melioration,” introduced by Herrnstein (1997), proposes to update the cur-
rent choice probabilities so as to increase the choice probability associated
with the greatest value of Qa = Ra/Pa . This learning rule gives a steady
state in which all options have the same average value of these ratios, hence
leading to the matching law. To incorporate state transitions, melioration
can be reformulated as TD learning that estimates the value of the state,
Qa (s):

�Q̂a (st) = α

[(
rt + γ

∑
a

Q̂a (st+1)pa (st+1) − Q̂a (st)

)
δaat

]
, (B.3)

and the update of the choice probabilities can be described by using policy
parameters as

�qa∗ (st) =α

(
Q̂a∗ (st) − 1

n

n∑
a=1

Q̂a (st)

)
, a∗ ≡ arg max

a
Q̂a (st),

pa (s) = f (qa (s))

/∑
a ′

f (qa ′ (s)) .

Melioration is implemented by the two parts responsible for evaluation and
choice and hence is interpreted as a class of the actor-critic learnings in a
broad sense (Daw & Touretzky, 2001). If the choice is deterministically made
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on the basis of the maximum value of Qa (st), namely, at = arg maxa Q̂a (st),
then equation B.3 is described as

�Q̂a (st) = α
[(

rt + γ max
a

Q̂a (st+1) − Q̂a (st)
)

δaat

]
.

Thus, melioration includes “greedy Q-learning”(Sutton & Barto, 1998) as
an extreme case.

Reinforcement learning rules based on the Q-values, for example, Q-
learning and Sarsa (Sutton & Barto, 1998), do not generally exhibit the
matching law. In Q-based learning, the relationships between the choice
probabilities and the average returns, is determined as

pa (s) = f (Qa (s))

/∑
a

f (Qa (s)) .

Therefore, the matching law can be obtained only in the greedy case defined
at the limit, f (q ) = lim

β→∞
eβq .

Appendix C: Details of Simulations

In Figures 1, 2, and 4, simulations were conducted in the actor-critic system
defined with α = 0.005 and f (q ) = e10q , and the initial conditions at t = 0
were set as V = q1 = q2 = 0. In the simulations displayed in Figures 2 and
4, the locally averaged incomes R̂1 and R̂2 were updated on each trial
according to

�R̂a = α(rtδaat − R̂a ) ,

with the initial conditions R̂1 = R̂2 = 0 at t = 0. The timescale for the av-
eraging is set as 1/α = 200 trials. In order to see the local matchings, the
fraction R̂1/(R̂1 + R̂2) are shown with gray curves in Figures 2E and 4E.

Acknowledgments

We express our sincere thanks to Takayuki Sakagami of Keio University
for fruitful discussions on animals’ choice behavior at the early stage of
this study. This work was partially supported by Grants in Aid for Priority
Researches 17022036 and 17021038.

References

Barraclough, D., Conroy, M., & Lee, D. (2004). Prefrontal cortex and decision making
in a mixed-strategy game. Nature Neuroscience, 7(4), 404–410.



Actor-Critic Learning 249

Baum, W. M. (1981). Optimization and the matching law as accounts of instrumental
behavior. Journal of the Experimental Analysis of Behavior, 36, 387–402.

Baum, W., & Rachlin, H. (1969). Choice as time allocation. Journal of the Experimental
Analysis of Behavior, 12, 861–874.

Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional
imaging of neural responses to expectancy and experience of monetary gains and
losses. Neuron, 30, 619–639.

Davison, M., & McCarthy, D. (1987). The matching law: A research review. Mahwah,
NJ: Erlbaum.

Daw, N. D., & Touretzky, D. S. (2001). Operant behavior suggests attentional gating
of dopamine system inputs. Neurocomputing, 38–40, 1161–1167.

Daw, N. D., & Touretzky, D. S. (2002). Long-term reward prediction in TD models of
the dopamine system. Neural Computation, 14, 2567–2583.

Dayan, P., & Abbott, L. (2001). Theoretical Neuroscience. Cambridge, MA: MIT press.
Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning.

Neuron, 36, 285–298.
DeCarlo, L. T. (1985). Matching and maximizing with variable-time schedules. Jour-

nal of the Experimental Analysis of Behavior, 43, 75–81.
Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning

and motor control. Current Opinion in Neurobiology, 10, 732–739.
Gallistel, C., Mark, T., King, A., & Latham, P. (2001). The rat approximates an ideal

detector of changes in rates of reward: Implications for the law of effect. J. Exp.
Psychol. Anim. Behav. Processes, 27, 354–372.

Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., Imamizu,
H., & Kawato, M. (2004). A neural correlate of reward-based behavioral learning
in caudate nucleus: A functional magnetic resonance imaging study of a stochastic
decision task. J. Neurosci., 24(7), 1660–1665.

Herrnstein, R. J. (1997). The matching law: Papers in psychology and economics. Cam-
bridge, MA: Harvard University Press.

Herrnstein, R. J., & Heyman, G. M. (1979). Is matching compatible with reinforce-
ment maximization on concurrent variable interval, variable ratio? Journal of the
Experimental Analysis of Behavior, 31, 209–223.

Herrnstein, R. J., & Vaughan, W. J. (1980). Melioration and behavioral allocation. In
J. Staddon (Ed.), Limits to action: The allocation of individual behavior. New York:
Academic Press.

Heyman, G. M. (1979). A Markov model description of changeover probabilities
on concurrent variable-interval schedules. Journal of the Experimental Analysis of
Behavior, 31, 41–51.

Heyman, G., & Monaghan, M. (1994). Reinforcer magnitude (sucrose concentration)
and the matching law theory of response strength. Journal of the Experimental
Analysis of Behavior, 61, 505–516.

Houk, J. C., Davis, J. L., & Beiser, D. G. (1994). Models of information processing in the
basal ganglia (computational neuroscience). Cambridge, MA: Bradford Books, MIT
Press.

Houston, A. I., & McNamara, J. (1981). How to maximize reward rate in two variable-
interval paradigms. Journal of the Experimental Analysis of Behavior, 35, 367–396.



250 Y. Sakai and T. Fukai

Jacobs, E. A., & Hackenberg, T. D. (1996). Humans’ choices in situations of time-
based diminishing returns: Effects of fixed-interval duration and progressive-
interval step size. Journal of the Experimental Analysis of Behavior, 65, 5–
19.

Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. J. (2001). Anticipation of in-
creasing monetary reward selectively recruits nucleus accumbens. J. Neuroscience,
15, 1–5.

Mazur, J. (1981). Optimization theory fails to predict performance of pigeons in a
two-response situation. Science, 214(4522), 823–825.

Mazur, J. E. (2005). Learning and behavior.(6th ed.). Upper Saddle River, NJ: Prentice
Hall.

McClure, S., Berns, G. S., & Montague, P. (2003). Temporal prediction errors in a
passive learning task activate human striatum. Neuron, 38(2), 339–346.

Montague, P., & Berns, G. (2002). Neural economics and the biological substrates of
valuation. Neuron, 36(2), 265–284.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic
dopamine systems based on predictive Hebbian learning. J. Neuroscience, 16,
1936–1947.

Morris, G., Arkadir, D., Nevet, A., Vaadia, E., & Bergman, H. (2004). Coincident but
distinct messages of midbrain dopamine and striatal tonically active neurons.
Neuron, 43, 133–143.

Platt, M., & Glimcher, P. (1999). Neural correlates of decision variables in parietal
cortex. Nature, 400(6741), 233–238.

Rachlin, H., Green, L., Kagel, J., & Battalio, R. (1976). Economic demand theory and
psychological studies of choice. In G. Bower (Ed.), The psychology of learning and
motivation (Vol. 10, pp. 129–154). New York: Academic Press.

Sakagami, T., Hursh, S. R., Christensen, J., & Silberberg, A. (1989). Income maximiz-
ing in concurrent interval-ratio schedules. Journal of the Experimental Analysis of
Behavior, 52, 41–46.

Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of action-
specific-reward value in the striatum. Science, 310, 1337–1340.

Savastano, H. I., & Fantino, E. (1994). Human choice in concurrent ratio-interval
schedules of reinforcement. Journal of the Experimental Analysis of Behavior, 61,
453–463.

Schultz, W. (2004). Neural coding of basic reward terms of animal learning the-
ory, game theory, microeconomics and behavioural ecology. Current Opinion in
Neurobiology, 14, 139–147.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275, 1593–1599.

Seung, H. (2003). Learning in spiking neural networks by reinforcement of stochastic
synaptic transmission. Neuron, 40(6), 1063–1073.

Silberberg, A., Thomas, J., & Brendzen, N. (1991). Human choice on concurrent
variable-interval, variable-ratio schedules. Journal of the Experimental Analysis of
Behavior, 56, 575–584.

Staddon, J., & Hinson, J. (1983). Optimization: A result or a mechanism? Science, 221,
976–977.



Actor-Critic Learning 251

Stubbs, D. A., Pliskoff, S. S., & Reid, H. M. (1977). Concurrent schedules: A quanti-
tative relation between changeover behavior and its consequences. Journal of the
Experimental Analysis of Behavior, 27, 85–96.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the
representation of value in the parietal cortex. Science, 304, 1782–1787.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning. Cambridge, MA: MIT
press.

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004).
Prediction of immediate and future rewards differentially recruits cortico-basal
ganglia loops. Nature Neuroscience, 7, 887–893.

Vyse, S. A., & Belke, T. W. (1992). Maximizing versus matching on concurrent
variable-interval schedules. Journal of the Experimental Analysis of Behavior, 58,
325–334.

Wang, X. (2002). Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36(5), 955–968.

Received June 27, 2005; accepted March 31, 2007.


